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ABSTRACT

Context. The scientific community employs complicated multiphysics simulations to understand the physics in Solar, Stellar, and
Interstellar media. These must be tested against known solutions to ensure their validity. Several well-known tests exist, such as the
Sod shock tube test. However, a test for nonlinear diffusivity is missing. This problem is highly relevant in the Solar atmosphere,
where various events release energy that subsequently diffuses by Spitzer thermal conductivity.
Aims. The aim is to derive an analytical solution for nonlinear diffusivity in 1D, 2D, and 3D, which allows for a nonzero background
value. The solution will be used to design a test for numerical solvers and study Spitzer conductivity in the Solar atmosphere.
Methods. There existed an ideal solution assuming zero background value. We perform an analytical first-order perturbation of this
solution. The first-order solution is first tested against a dedicated nonlinear diffusion solver, whereupon it is used to benchmark the
single- and multifluid radiative magnetohydrodynamics code Ebysus, used to study the Sun. The theory and numerical modeling are
used to investigate the role of Spitzer conductivity in the transport of energy released in a nanoflare.
Results. The derived analytical solution models nonlinear diffusivity accurately within its region of validity and approximately be-
yond. Various numerical schemes implemented in the Ebysus code have been found to model Spitzer conductivity correctly. The
energy from a representative nanoflare has been found to diffuse 9 Mm within the first second of its lifetime due to Spitzer conductiv-
ity alone, strongly dependent on the electron density.
Conclusions. The analytical first-order solution is a step forward in ensuring the physical validity of intricate simulations of the
Sun. Additionally, since the derivation and argumentation are general, they can easily be followed to treat other nonlinear diffusion
problems.

Key words. nanoflare – magnetohydrodynamics (MHD) – self-similar solutions – numerical test

1. Introduction

The scientific community of today relies heavily on compli-
cated multiphysics simulations. To increase the trustworthiness
of such simulations, every single physics module should be
benchmarked against analytical solutions. Several such bench-
marks exist and are often used, such as the Sod shock tube test
for hydrodynamics codes (Sod 1978).

In this paper, we are interested in partial differential equa-
tions of parabolic terms (nonlinear diffusion) in Cauchy prob-
lems. Assuming radial symmetry, that is given by

∂T
∂t
=

1
rs−1

∂

∂r

(
rs−1D(T )

∂T
∂r

)
, D(T ) = KT n, (1)

where K is a constant, n > 0 is the (positive) nonlinearity ex-
ponent, and s ∈ {1, 2, 3} is the number of dimensions. T is cho-
sen because it will later be temperature, but it can represent any
value. A diverse set of problems can be modeled by such non-
linear diffusion with different exponents n, a inexhaustive list is
given by Diez et al. (1992).

It is computationally demanding to solve such problems nu-
merically. That is because the stability condition of an explicit
diffusion solver requires the time step to scale like the spatial
resolution squared, ∆t ∝ ∆r2 (see Press et al. 2007, p. 1044).
⋆ e-mail: s.v.furuseth@gmail.com

Therefore, different algorithms have been developed to solve
such problems and bypass this time-step constraint. These al-
gorithms need to be tested, preferably against an analytical solu-
tion.

An analytical solution exists for nonlinear diffusion of an in-
stantaneous point source with zero background T , making the
diffusion coefficient in Eq. (1) equal to zero beyond the extent of
the point source (Pattle 1959). That derivation finds self-similar
solutions that keep their shape with a gradually lower peak value
and broader spatial extent with time. In some problems, however,
it is not realistic to have zero background value. In this paper, we
extend this theory by a perturbation to include a nonzero back-
ground value. The theory will be used to analyze the efficacy of
different numerical schemes.

1.1. Thermal conductivity in the Solar atmosphere

We will apply the derivation to the modeling of thermal con-
ductivity by electrons in a plasma, as in the Solar atmo-
sphere (Spitzer 1962). If we assume a negligible heat conduction
perpendicular to the magnetic field in the plasma and a constant
mass density ρ, the conductive term can be written on the form
(see App. A for details)(
∂T
∂t

)
cond
= ∇∥ ·

(
κ∗
∥

cvρ
T 5/2
∇∥T

)
, (2)
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where cv is the specific heat capacity per mass, ρ is the mass
density, and κ∗

∥
T 5/2 is the parallel thermal conductivity with ex-

ponent n = 5
2 . Since the conduction is along the field lines, this

is modeled as diffusion in s = 1 dimensions. The coefficient
in the thermal conductivity is κ∗

∥
∼ 10−6 erg s−1 cm−1 K−3.5 for

a fully ionized hydrogen gas in the solar atmosphere (Spitzer
1962; Priest 1984). To bypass the time step constraint of typ-
ical explicit methods, this term can be solved implicitly as in
Bifrost (Gudiksen et al. 2011), with the wave method first im-
plemented in MURaM (Rempel 2016), or the explicit orthogonal
Chebyshev method known as ROCK2 (Abdulle & Medovikov
2001; Abdulle 2002; Abdulle & Li 2008; Zbinden 2011) and
implemented in Ebysus (Martínez-Sykora et al. 2020).

One cannot reasonably assume a zero background temper-
ature when modeling the nonlinear thermal conductivity in the
Solar atmosphere. However, the background temperature can be
much smaller than the source temperature, for example when
modeling thermal conduction from the O(MK) corona to the
O(kK) photosphere or when modeling the localized release of
energy from a nanoflare, as described and studied numerically
by Testa et al. (2014); Polito et al. (2018); Bakke et al. (2022).
Polito et al. (2018) found that lower-energy electrons tend to re-
lease more energy in the corona than higher-energy electrons,
as previously found in Reep et al. (2015), but that thermal con-
duction is more effective at heating the magnetic loop. Further,
they found that the initial conditions (IC) of the loops prior
to a nanoflare, in particular temperature and density, signifi-
cantly impact the atmosphere’s response. This work has been
extended into stellar flare events, where thermal conduction is
more important than radiation and a key process in the energy
flux (Kowalski et al. 2024). These studies modeled several phys-
ical processes that play a role in the energy flux in flares to get a
realistic description, including electron beams, thermal conduc-
tivity, nonlocal thermal equilibrium, and radiation. Each of these
processes competes and it is crucial to understand their indepen-
dent solutions to understand and separate them. We will focus
on the role of thermal conductivity.

1.2. Outline

In this paper, we will first make an analytical solution of the
nonlinear diffusivity in Sec. 2, which we will verify numerically
in Sec. 3. Based on this, we will explain and show how to use
this derivation to benchmark a code in Sec. 4. Then, we will
make a numerical experiment of how fast energy diffuses from a
nanoflare in Sec. 5 before we conclude.

2. Analytical derivation

2.1. Solution with zero background, T∞ = 0

An initial instantaneous point source quantity ϕ0 released at t = 0
and centered at r0 = 0 will diffuse as the self-similar solutions
first described by Pattle (1959) and comprehensively derived in
App. B. If we allow for a finite initial extent, they can be written

as

T (r, t) =

T0 (1 + χt)−
s

s n+2

(
1 −

r2

R(t)2

) 1
n
, if r < R(t)

0 , otherwise

(3)

R(t) = R0 (1 + χt)
1

s n+2 , (4)

χ =
s n + 2

n
2KT n

0

R2
0

=
s n + 2

n
2D(T0)

R2
0

, (5)

where T0 = max[T (t = 0)] is the initial representative peak value
and R0 is the initial representative width beyond which T = 0.
Self-similar shapes for various n in s = 1 dimensions are dis-
played in Fig. 1. The initial peak and width are related to the
total quantity (area under the graph) by

ϕ0 =

∞∫
T (r, 0)drs =

ΩsB
(

s
2 ,

1
n + 1

)
2

T0Rs
0 ≡

T0Rs
0

Gs,n
, (6)

where Ωs = {2, 2π, 4π} is the solid angle for s = {1, 2, 3} di-
mensions, B

(
s
2 ,

1
n + 1

)
is Euler’s Beta integral (see Abramowitz

& Stegun 1965, ch. 6), and Gs,n ≲ 1 (for n ≥ 1) is a time-
independent geometrical factor depending on n and s.

The representative peak T0 and width R0 are not clearly de-
fined for an instantaneous point source. However, that is not a
severe problem as any distribution that is 0 beyond a finite ra-
dius eventually will approach the shape in Eq. (3). This can be
understood by taking the limit χt ≫ 1, corresponding to R0 → 0,
and using Eq. (6), to get

lim
χt≫1

T (r < R(t), t) =

 n
s n + 2

(Gs,nϕ0)
2
s

2Kt


s

s n+2(
1 −

r2

R2(t)

) 1
n
, (7)

lim
χt≫1

R(t) =
(

s n + 2
n

2K(Gs,nϕ0)nt
) 1

s n+2
. (8)

The distribution depends only on the initial total quantity
ϕ0, not T0 and R0. The peak and width have simple de-
pendencies on time, max[T ] ∝ t−

s
s n+2 and R ∝ t

1
s n+2 , making

ϕ(t) = max[T (t)]R(t)s/Gs,n a constant.
For comparison, in the limiting case n = 0, corresponding to

isotropic diffusion (D = K), an initial instantaneous point source
at r0 = 0 is known to diffuse as a Gaussian that can be written as

T (r, t) = T0 (1 + χt)−
s
2 exp

(
−

r2

2R2
σ(t)

)
, (9)

Rσ(t) = Rσ0 (1 + χt)
1
2 , (10)

χ =
2K
R2
σ0

=
2D(T0)

R2
σ0

. (11)

Here, Rσ(t) is the standard deviation of the Gaussian distribu-
tion, not the boundary beyond which T = 0, since the Gaussian
extends to infinity. The total quantity is

ϕ0 = (2π)
s
2 T0Rs

σ0. (12)

We can see by the self-similar shapes in Fig. 1 that the Gaus-
sian distribution is the limiting case for n → 0+. As n→ ∞, the
edges become sharper as the diffusion coefficient in Eq. (1) is
relatively stronger at larger values, making the geometrical fac-
tor G1,n → 1/Ω1 = 0.5 in s = 1 dimensions.
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Fig. 1: Illustration of self-similar solutions in s = 1 dimensions
for different n given by the legend. All solutions have peak value
T0 = 1 and total quantity ϕ0 = 1 (note that the solution is sym-
metric around r = 0).

2.2. Including a nonzero background, T∞ > 0

The aim of this paper is to include a background value T∞ and
then predict how it evolves. By assuming that the background
has had time to reach equilibrium, we set T∞ to a constant. That
is, however, not essential for the following arguments. The total
initial distribution is given by

TTot(r, 0) = T∞ + T (r, 0), (13)

as illustrated in Fig. 2. If one completely neglects the impact
of the background value and assumes that the source evolves as
before, one gets the ideal zeroth-order solution

T (0)
Tot(r, t) = T∞ + T (r, t; R0,T0), (14)

where the superscripted (0) marks the zeroth order. This is a too
naïve approach. An important assumption in the ideal derivation
in App. B (based on Pattle 1959) was that T eventually would
go to zero beyond a finite radius, given by Eq. (B.3). That as-
sumption is broken by including a background value T∞ > 0. By
understanding the derivation in App. B, we realize in the follow-
ing the importance of this constraint and the consequences of
breaking it.

The shape of T (r, t) given by Eq. (3) for r < R(t) solves
the nonlinear diffusion equation in Eq. (1). Alternative solu-
tions include the trivial solution T = 0 and constant solution
T = const > 0. The trivial solution has the important added ben-
efit that it makes the diffusion coefficient in Eq. (1) zero, per-
fectly separating the two regions at the boundary r = R(t). A
nonzero background distribution T∞ > 0 will cause diffusion out
beyond R(t), preventing the perfect separation of the two regions.

Consider first the case T∞ ≫ T0. This allows a Taylor expan-
sion of the diffusion coefficient around the background as

D(TTot) = K(T∞ + T )n

= KT n
∞

[
1 + n

T
T∞
+

n(n − 1)
2

T 2

T 2
∞

+ O

(
T 3

T 3
∞

)]
. (15)

This diffusion will be dominated by the first term, which is con-
stant. The second term will gradually become less important as

R0 0 R0
0

T

T + T0

(t = 0)

0 Ttot

Fig. 2: Illustration of ICs with a background value T∞ ≥ 0 for
s = 1 dimensions and n = 5/2.

max[TTot(t)] will decrease toward T∞. Hence, the source will im-
mediately diffuse into the Gaussian shape in Eq. (9).

Consider next the case T∞ ≪ T0, which is less trivial and
more interesting for our use case. It is tempting to make a sim-
ilar expansion as in Eq. (15), with T and T∞ exchanged, giv-
ing terms of T n, T n−1, etc. That expansion is valid at r ≪ R,
where T ≫ T∞. The nonzero background value causes a slightly
larger diffusion coefficient, making the peak value max[TTot]
drop slightly faster. However, at r → ∞, the instantaneous point
source has not yet diffused, making T = 0 ≪ T∞ and the ex-
pansion singular. In the intermediate region, at r ∼ R, the back-
ground and source become comparable, T ∼ T∞, making the
terms of different order in T comparable as well. Thus, the distri-
bution will not have as sharp edges as for n > 1 in Fig. 1, it will
have wider tails as for smaller values of n→ 0. Nevertheless,
by considering the inverse time scale χ in Eq. (5), which is pro-
portional to the peak diffusion coefficient, one can find that the
global widening will still be dominated by the T n term. Hence,
the overall widening will follow the n-solution, but it will be
reshaped to have wider tails. Nevertheless, as χt → ∞, the peak
value will eventually drop to max[T (t)] ≪ T∞, and it will diffuse
into a Gaussian, as for the previous case, T∞ ≫ T0.

2.3. First-order solution for T∞ ≪ T0

In the previous section, we discussed qualitatively how the so-
lution will change when adding a nonzero background value
T∞ > 0. In this section, we derive a first-order perturbation so-
lution that quantitatively estimates it. This is done assuming an
identical shape to the ideal solution but with a modified peak and
width. We consider separately the two time regimes, χt ≪ 1 and
χt ≫ 1. In the former, the zeroth-order solution depends on the
shape of the IC, while in the latter, only on the source quantity
ϕ0.

Consider first χt ≪ 1, the beginning of the diffusion. In this
regime, we focus on how the peak value max[TTot] evolves. The
peak of the zeroth-order solution in Eq. (14) is given by

max[T (0)
Tot(t)] = T∞ + T (0, t) = T∞ + T0

[
1 + χ(T0)t

]− s
s n+2 , (16)

where the dependence on T0 in χ from Eq. (5) has been made
explicit. The first-order perturbation is to include the background
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value in χ as

max[T (1)
Tot(t)] = T∞ + T0

[
1 + χ(T0 + T∞)t

]− s
s n+2

= T∞ + T0

[
1 +

(
1 +

T∞
T0

)n

χ(T0)t
]− s

s n+2
. (17)

We expand the parentheses by taking the limits χt ≪ 1 and
T∞ ≪ T0 to get a simple algebraic expression for the correction
done by the first perturbation

max[T (1)
Tot(t)] −max[T (0)

Tot(t)] ≈ −
sn

sn + 2
T∞
T0
χ(T0)t. (18)

The correction is negative, meaning that the extra diffusion due
to the background makes the peak decrease faster, as expected.
Furthermore, it is also proportional to χ(T0)t and T∞/T0, which
are assumed to be small in this regime. In the following, χ will
always mean χ(T0), as in Eq. (5).

Consider next χt ≫ 1. In this regime, we focus first on the
solution’s width. As seen from Eq. (8), the widening to zeroth
order depends on ϕ0. However, this expression neglects ϕ∞ that
is illustrated in Fig. 2, which corresponds to the background and
increases with time as

ϕTot(t) = ϕ0 + ϕ∞(t) ≈ ϕ0 + ΩsT∞Rs(t). (19)

To first order, we use the unperturbed radius R(0) to approximate
the extra quantity ϕ∞, which gives

R(1)(t) = R(0)(t)
(
ϕTot

ϕ0

) n
s n+2 ϕ∞≪ϕ0
−−−−−→ R(0)(t)

(
1 +

nGs,nΩs

s n + 2
T∞R(0)s

T0Rs
0

)
.

(20)

The correction is positive, meaning that the background causes
the distribution to widen faster. The relative correction is pro-
portional to T∞/T0, which is small, and to (R(0)(t)/R0)s, which
gradually increases. Note, even though the limit ϕ∞ ≪ ϕ0 is only
taken for the final right-hand side (RHS) of Eq. (20), this first-
order correction will be erroneous when ϕ∞ ≳ ϕ0.

To make the expression in Eq. (20) approximately valid for
χt ≲ 1, we do an approximate asymptotic matching by reintro-
ducing the 1 in the parenthesis of Eq. (4)

R(1)(t) = R0

[
1 +

(
ϕTot

ϕ0

)n

χt
] 1

s n+2
. (21)

We now have the expression max[T (1)
Tot(t)] for χt ≪ 1 and

R(1)(t) for χt ≫ 1. To complete the pairs, we use that the total
quantity above T∞ is still equal to ϕ0 as in Eq. (6), enforced by

setting (max[T (1)
Tot(t)] − T∞)(R(1)(t))s = T0Rs

0. That gives

max[T (1)
Tot(t)] =



T∞ + T0

[
1 +

(
1 +

T∞
T0

)n

χt
]− s

s n+2
, if χt ≪ 1

T∞ + T0

[
1 +

(
ϕTot

ϕ0

)n

χt
]− s

s n+2
, if χt ≳ 1

→ T∞ +

 n
s n + 2

(Gs,nϕTot)
2
s

2Kt


s

s n+2

, if χt ≫ 1

(22)

R(1)(t) =



R0

[
1 +

(
1 +

T∞
T0

)n

χt
] 1

s n+2
, if χt ≪ 1

R0

[
1 +

(
ϕTot

ϕ0

)n

χt
] 1

s n+2
, if χt ≳ 1

→
(

s n+2
n 2K(Gs,nϕTot)nt

) 1
s n+2 , if χt ≫ 1.

(23)

Note that only the second term of max[T (1)
Tot(t)], not T∞, should

be multiplied by [1 − (r/R(1))2]1/n as in Eq. (3).

2.4. Validity and limitations of the first-order solution

The first-order solutions in Eqs. (22-23) are adjustments of
the zeroth-order solutions in Eqs. (4) and (14). At large times
χt ≫ 1, the adjustments stem from expanding the quantity ϕ0 by
ϕ∞, equivalent to a factor (1 + ϕ∞/ϕ0). One can imagine that a
second-order solution would include an additional term of order
(ϕ∞/ϕ0)2. For an exponent α ≲ 1, being n

s n+2 < 1 and 2
s n+2 < 1

for the width and peak, respectively, the adjustment becomes1 + ϕ∞
ϕ0
+
ϕ2
∞

ϕ2
0

α = 1+α
ϕ∞
ϕ0
+
α(α − 1)

2
ϕ2
∞

ϕ2
0

+α
ϕ2
∞

ϕ2
0

+O

ϕ3
∞

ϕ3
0

. (24)

The 2nd and 3rd terms on the RHS stem from the first-order per-
turbation, estimating the modification by the first-order pertur-
bation. The 4th term estimates the modification by the second-
order perturbation. It is this term that must be small for the first-
order perturbation to be a good approximation. The 5th term of
higher order reminds us that these perturbation expressions are
not generally valid estimates when ϕ∞ ∼ ϕ0.

This first-order solution also has a significant limitation. It
modifies the peak and width but assumes the zeroth-order shape.
In section 2.2, we argued that the background will modify the
shape to have wider tails. Therefore, we expect an unrepresen-
tative larger error for the boundary R beyond which TTot = T∞.
Instead, we will study the evolution of Rp, defined as the ra-
dius where the source has height equal to p times the peak value
above the background

TTot(Rp, t) = T∞ + p (max[TTot(t)] − T∞) . (25)

A common example of this is the half-width-half-maximum
(HWHM), given by p = 0.5. Since these are self-similar shapes,
both R(t)/R(0) and Rp(t)/Rp(0) have the same time dependence,
given by Eq. (4) in the limit T∞ → 0+.

3. Numerical validation of perturbation theory

We have run a controlled numerical experiment to test the ana-
lytical expressions for the ideal solution T (0) and first-order so-
lution T (1). This is done for the normalized parameters presented
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Fig. 3: Verification of analytical derivation. Each plot shows the IC, as well as the simulation run using solve_ivp in Python,
zeroth-order solution T (0), and first-order solution T (1), all at a later time such that χt ≫ 1. The colored ‘+’ corresponds to the
HWHM point of each calculation. This is done for increasing background values T∞/T0 given by the plot titles. The simulation box
extends to r = 100 R0 in (c), preventing any impacts caused by the boundary condition.
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Fig. 4: Verification of analytical derivation for T∞/T0 = 0.01.
Comparison as a function of χt for a simulation in Python (blue
markers), as well as the zeroth-order (magenta curve) and first-
order solutions (three green curves). In the top panel, the abso-
lute reduction of max[TTot] and widening of HWHM (R0.5) is
shown. In the following two panels, the difference to the simula-
tion is shown for the temperature and width, respectively. These
panels also include the evolution of ϕ∞/ϕ0 in black. The dashed
vertical line marks t = 1/χ and the dotted vertical line marks
t = t′ ≫ 1/χ, the time of the snapshot in Fig. 3b.

in Table 1, including three different values for T∞, all smaller
than T0. The exponent n = 5/2 and dimensionality s = 1 corre-
sponds to thermal conductivity in the Solar corona, as described
in section 1.1. The initial quantity is calculated from Eq. (6) to be
ϕ0 ≈ 1.64. The exponent α in Eq. (24) takes the values n

s n+2 =
5
9

and 2
s n+2 =

4
9 for the width and peak, respectively.

Table 1: Parameters for numerical verification of theory

Parameter n s K R0 T0 T∞/T0
Value 5/2 1 1 1 1 {0.001, 0.01, 0.05}

The numerical results have been calculated with an implicit
scheme (BDF), using scipy.solve_ivp in Python with the
second-order stencil

∂Ti

∂t
=

K
∆r

[
T n

i+1 + T n
i

2
Ti+1 − Ti

∆r
−

T n
i + T n

i−1

2
Ti − Ti−1

∆r

]
, (26)

using ∆r = R0/250 = 4 × 10−3. Hence, the initial peak is suffi-
ciently well resolved to make numerical artifacts negligible.

The results of the scan are presented in Fig. 3. The cal-
culations have been run equally long, until a time t′ such that
ϕ∞(t′) = ϕ0 in Fig. 3c. This occurs when the zeroth-order radius
is R(0)(t′) = 16.35 R0, which is in the regime χt ≫ 1. Hence, it is
the perturbation in the second line of Eq. (23) that has been used
to compare to the simulation. For the first case, T∞/T0 = 0.001,
the final background quantity is negligible compared to the
source quantity, ϕ∞(t′)/ϕ0 = 0.02. Hence, the zeroth- and first-
order solutions are visually almost indistinguishable as the peak
and width have been adjusted by approximately 1%. Compared
to the simulation, the relative error of the peak has decreased
from 1% to 0.1%. For the second case, T∞/T0 = 0.01, the ideal
and first-order solutions have visually diverged. It is the lat-
ter that best approximates the simulation. The extra quantity
is still small but nonnegligible, ϕ∞(t′)/ϕ0 = 0.20. In this case,
the width has increased by 11% due to the first-order perturba-
tion, while the estimated second-order correction in Eq. (24) is
only 2.2%. Note that the peak value max[T (1)

Tot(t)] and HWHM
are almost identical to the simulation. However, the expected
slightly heavier tail in the simulation is visible. For the third
case, T∞/T0 = 0.05, the extra quantity has reached equality to
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the source quantity, ϕ∞(t′) = ϕ0. Even though the first-order so-
lution is better than the ideal case, it is no longer a good ap-
proximation of the simulation. Both the peak and HWHM are
visually different, and the shape is even more different. This was
expected, as second- and higher-order terms of (ϕ∞(t′)/ϕ0) = 1,
will no longer be negligible.

We have studied the time evolution in greater detail for the
intermediate background value, T∞/T0 = 0.01. The evolution of
max[T ] and the HWHM (R0.5) are presented in Fig. 4. The abso-
lute value curves in the first panel are visually indistinguishable,
except the ideal zeroth-order solution that deviates toward the
end with a too narrow and peaked distribution, as expected. Af-
ter χt = 10, the peak error levels out at almost 6 × 10−3 T0. It
does not grow more for these parameters because the simula-
tion is slower for a smaller peak and both peaks decrease toward
max[TTot]→ T∞ = 10−2 T0. However, the relative error in width
ends at −16%.

The first-order perturbation has three different curves, de-
pending on the value of χt. They are given in the same order
by the legend as by the three lines in Eqs. (22-23). The third
line only coincides with the second for χt > 103. This delayed
convergence supports the need for the approximate matching in-
troduced in Eq. (21). The second line also coincides rather well
with the first line for χt < 0.1, and thereby connecting the two
regimes. Therefore, the second expression will be used in the
following sections.

The first-order perturbation reduces the differences between
the simulation and the ideal zeroth-order solution up to the end
of the simulation when ϕ∞/ϕ0 = 0.4. The absolute relative peak
error maxes at 5 × 10−4 T0, an order of magnitude smaller than
before. The relative width error has also dropped by an order of
magnitude, to 1.6% at the end of the simulation, notably now
with the opposite sign.

The ideal zeroth-order solution appears to better estimate the
width at small times χt < 0.3, as seen in the bottom panel of
Fig. 4. First of all, note that this small discrepancy is relative to
the ideal HWHM, which is initially small as well. The relative
mismatch decreased by reducing the grid spacing ∆r to the cur-
rent choice, as the singular point at r = R is difficult to resolve
with a uniform grid. Here, the absolute difference to the first-
order perturbation is approximately ∆r/4. Secondly, note that the
distribution shape is expected to adjust during this time regime,
χt ≪ 1. By close inspection, the discrepancy to the first-order
perturbation is caused by the marginally heavier tails in the sim-
ulation, making the width at half maximum marginally narrower.
This effect is illustrated by comparing the curves for n = 5

2 and,
for example, n = 0 in Fig. 1.

4. Benchmarking a numerical code

4.1. Designing a numerical test

The previous sections illustrate several requirements to remem-
ber when designing a test for your nonlinear diffusion solver for
any exponent n.

1. α(ϕ∞/ϕ0)1 ≪ 1, if zeroth-order solution
α(ϕ∞/ϕ0)2 ≪ 1, if first-order solution
where α = max

(
n

s n+2 ,
2

s n+2

)
2. χt ≫ 1

3. R(t) ≳ R(0)(t) = R0(1 + χt)
1

s n+2 ≫ R0
4. R0 ≫ ∆r

Point 1 states that one must use the zeroth and first-order solu-
tions only in their regions of validity. This sets an upper limit

for the time. Point 2 incorporates that one additionally must wait
until the initial distribution has adjusted to the approximately
self-similar solution, setting as well a lower limit for time. Obvi-
ously, the lower limit for time must be lower than the upper limit.
When it comes to spatial discretization, the lower limit on time
from point 2 also sets a lower limit for how much the distribution
has to widen, given by point 3. Point 4 includes additionally that
the initial distribution must be sufficiently resolved numerically.
The latter two points combined make a lower requirement for
how many grid points one needs. A functioning set of parameters
for this is given by the parameters in Table 1, with T∞/T0 ≤ 0.01
and R0/∆r ≥ 10, run until a time t′ such that R(0)(t′)/R0 ≥ 2, but
also ϕ∞(t′)/ϕ0 ≤ 0.10. This can be both a one-off test, as exem-
plified below, and continuous integration in the form of a test to
be automatically run at each new commit to a version control
software such as git.

4.2. Test of Spitzer conductivity in Ebysus

The theory described in this paper has been used to benchmark
various solvers for Spitzer conductivity implemented in Ebysus.
The benchmark has been done for a one-off case with parame-
ters comparable to those in the Solar atmosphere. The electron
density is N = 1 × 1012 cm−3 and the conductivity coefficient is
set to κ∗

∥
= 1.1 × 10−6 erg s−1 cm−1 K−3.5, which is realistic for

the Solar atmosphere (Braginskii 1965; Spitzer 1962). The back-
ground temperature combined with the released energy gives an
initial temperature profile as in Eq. (14) with T∞ = 5 × 104 K,
T0 = 5 × 106 K, and R0 = 225 km.

The comparison to the first-order solution is given as a func-
tion of the radius in Fig. 5. The agreement is clear. Toward
the end, the tails are slightly wider in the simulations com-
pared to the theory, as expected from theoretical considerations
in Sec. 2.2 and also seen in Fig. 3.

The corresponding errors of the peak and HWHM are given
in Fig. 6. All three methods agree reasonably well, the wave
method being slightly off compared to the other two. The error
seems to grow with time, especially in radius. Since the first-
order solution showed a lower peak value and larger HWHM
than the trusted simulation in Fig. 4, one can argue that the
explicit and ROCK2 methods are more accurate than the wave
method. This is understandable since the wave method approx-
imates the problem by solving a hyperbolic diffusion equa-
tion (Rempel 2016).

To advance the simulations 3 s from the IC to the second
curve in Fig. 5 or first point in Fig. 6, the standard explicit
method used 28656 time steps, the wave method used 7111 time
steps, while the ROCK2 method uses 2699 time steps. The
length of the time steps was calculated dynamically to ensure nu-
merical stability, depending on the diffusivity D(T ) and the spa-
tial resolution. These numbers exemplify that many time steps
are required to solve nonlinear diffusion and that great speedup
can be achieved by seeking alternatives to the standard explicit
method, such as the competitive wave and ROCK2 methods.
Q. Wargnier et al. 2024 (in prep.) will describe further details on
the Ebysus benchmark using both ROCK2 and PIROCK (Ab-
dulle & Vilmart 2013). Furthermore, G. Cherry et al. (in prep.)
will use the theory derived here to study the Spitzer conductivity
modeling in the Bifrost code, aiming to analyze the efficacy of
the different numerical methods.

It is important to verify that these tests followed the bench-
mark requirements given in Sec. 4.1. The final distribution
is well within the first requirement, with ϕ∞/ϕ0 = 0.05 ≪ 1
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Fig. 5: Comparison between Ebysus and the first-order expression in Eqs. (22-23). The narrowest curve is the IC, and the following
curves are given after exponentially longer time as [3 s, 6 s, 12 s, . . . ]. Ebysus has been run with different Spitzer methods in the
different panels: (a) is explicit, (b) is the wave method from Rempel (2016), and (c) is the ROCK2 method (Abdulle & Medovikov
2001).
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Fig. 6: Error plot for the test of Ebysus presented in Fig. 5.
See the description in the similar Fig. 4. Note that, here, several
y axes are linear and the error is shown relative to the first-order
perturbation theory. The symmetric logarithmic error scales in
the two bottom panels go from −4 × 10−2 to 4 × 10−2.

and α ∈ {5/9, 4/9}. The curves shown, except for the IC, are
for t ≥ 3.0 s ≫ 1/χ = 0.47 s. As a consequence, their widths
R(t > 0) are significantly larger than R0. Even larger widths
could have been necessary if not for the choice of setting the IC
equal to the relevant self-similar solution. There is no concrete

estimate for when a general source distribution reaches the self-
similar solutions, even in the ideal case. Lastly, the IC is well
resolved, with resolution such that R0/∆r = 100 ≫ 1.

5. Nanoflare experiment

Finally, we will analyze the thermal Spitzer conductivity dur-
ing nanoflares in the Solar atmosphere in isolation from other
physical processes. We are inspired by the studies of Polito et al.
(2018) and Testa et al. (2014). Here, we will focus on the impact
of only conductivity without radiation, nonequilibrium ioniza-
tion effects, advection, or electron beams. A total of 10 configu-
rations have been analyzed, consisting of 1 reference model and
9 variations where we study the impact of changing different key
parameters focusing solely on thermal conduction.

5.1. Model setup

A reference experiment has been constructed similar to the
thermal conduction experiment in Polito et al. (2018) with
an initial peak temperature of 1 MK and coronal electron
density of N ≲ 1 × 109 cm−3. They increased the energy by
Q̇ = 6 × 1023 erg s−1 for 10 s over an area of A = 5 × 1014 cm2

(corresponding to a diameter of 0.25 Mm) transverse to the mag-
netic field and over a length of 9 Mm along a magnetic loop. This
is appropriate for a nanoflare according to the work of Testa et al.
(2014) and the description of nanoflares by Parker (1988). The
released energy increased the coronal temperature to 20 MK in
a few seconds. The energy was conducted down to the transition
region, which caused the denser plasma to move quickly up into
the corona.

Our study focuses on the importance of thermal conduc-
tion at the beginning of a nanoflare, and how it depends on the
key parameters. Spitzer’s conductivity coefficient is again set
to κ∗

∥
= 1.1 × 10−6 erg s−1 cm−1 K−3.5 (Braginskii 1965; Spitzer

1962). The IC of the reference experiment is consistent with an
immediate energy increase equivalent to a typical nanoflare en-
ergy release over 1 s, Eref = Q̇ × 1 s = 6 × 1023 erg. All the en-
ergy is unrealistically assumed to increase the temperature of
the plasma, no energy goes into macroscopic kinetic energy or
ionization. The energy is released over an area A = 5 × 1014 cm2

transverse to the magnetic field and over a self-similar shape
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with radius Rref
0 = 0.15 Mm parallel to the magnetic field, cor-

responding to an effective diameter of 0.25 Mm. The refer-
ence electron density is set to Nref = 1 × 109 cm−3. Assum-
ing an ideal gas, that gives an initial peak temperature of
T ref

0 = 140 MK that quickly diffuses over the background tem-
perature of T ref

∞ = 1 MK. Even though this peak temperature is
unrealistic, we choose such a large T ref

0 and correspondingly
small Rref

0 to illustrate the impact of different key parameters bet-
ter.

In addition to the reference experiment, several small param-
eter scans have been performed around the reference parameters
(T ref

0 ,T
ref
∞ , E

ref ,Rref
0 ,N

ref)

1. Change T0 and R0 ∝ 1/T0 with E unchanged.
2. Change T0 and E ∝ T0 with R0 unchanged.
3. Change only T∞.
4. Change N with E unchanged, which in turn changes both

T0 ∝ 1/N and the K = κ∗
∥
/cvρ ∝ 1/N in Eq. (2).

5.2. Results

The numerical experiments have been simulated with the code
described in Sec. 3 with R0/∆r ≥ 25 and evaluated with the first-
order theory described in Eqs. (22-23). The evolution of the
HWHM R0.5 (radius at 50% of maximum) and maximum tem-
perature max[TTot] are presented in Fig. 7. The theoretical curves
agree well with the simulations in most cases. For the encircled
points, marking when ϕ∞ ≥ ϕ0, the agreement becomes worse,
as expected. This is due to the heavier tails illustrated in Fig. 3c
that are not properly represented outside the region of validity
of the first-order solution. The general behavior is, nevertheless,
well included in the analytical first-order solutions.

The reference simulation shows the behavior due to the con-
duction of energy released in the first second of a nanoflare in the
corona. Within 1 s, the energy has been spread out over an area
with HWHM of approximately 9 Mm, or full width of 18 Mm,
and the maximum temperature has dropped to 2 MK = 2 T∞.
Hence, the extent of the coronal heating used in Polito et al.
(2018) could have been achieved by the conduction alone within
a second.

When changing the parameters from the reference configura-
tion, several important results are prominent, many of which can
be understood from the analytical solution. Changing only T0
and R0 affects only the early phase of the evolution. At χt ≫ 1,
these curves converge to the reference configuration. Hence, the
spatial extent of the IC parallel to the magnetic field is of little
physical importance for long-term conductivity.

When increasing T0 and E, while keeping R0 fixed, it causes
a larger χ in Eq. (5) and thereby an earlier evolution since χt = 1
occurs for a correspondingly earlier t. Hence, the energy of a
more energetic event will be conducted faster. Changing the re-
leased energy by an order of magnitude up (down), as in the scan,
changes both the radius and the temperature above the back-
ground (max[TTot] − T∞) after 1 s by a factor of ∼

√
10 ≈ 3 up

(down). Note that this change of E along the field line can also
be due to a change of area A perpendicular to the field.

Increasing only the background temperature T∞ makes the
widening occur slightly faster toward the end, as seen by the pink
curves and points relative to the reference. That is because, to-
ward the end of the simulation, the max temperature approaches
T∞ = 107 K, and the background temperature will contribute to
significant diffusion. Put differently, the first-order perturbation
is a poor approximation for this case, as seen in the encircled
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Fig. 7: Evolution of the width and maximum of the tempera-
ture peak after the concentrated release of energy corresponding
to 1 s of a nanoflare in the Solar corona. The model parameters
are detailed in Sec. 5.1. The top panel shows the HWHM, while
the bottom panel shows maximum temperature. The curves are
calculated with Eqs. (22-23) and the points are calculated with
simulations. Where the points are encircled ϕ∞ ≥ ϕ0, making
the equations a poor approximation. The gray shaded area cor-
responds to t ∈ [1 s, 20 s], the time frame of the simulations
in Polito et al. (2018).

pink points relative to the pink curves. Here, the first-order the-
ory will underestimate the simulated widening as ϕ∞ ≥ ϕ0 This
is the same effect as in Fig. 3c.

Increasing the electron density N increases the heat capacity
of the plasma, thereby reducing the initial increase of temper-
ature T0 and the conductivity K. Hence, the first-order theory
will be less accurate, since ϕ∞/ϕ0 starts out lower. In addition,
the widening will be slower. Increasing the electron density by
an order of magnitude reduces the width after 1 s by a factor of
∼ 5.5. This is one reason why the conduction slows down when
it reaches the denser transition region in Polito et al. (2018).

6. Conclusion

In this paper, we have stressed that every single physics mod-
ule in numerical multiphysics simulations must be tested thor-

Article number, page 8 of 10



S.V. Furuseth et al.: On Thermal Conduction in the Solar Atmosphere

oughly and separately. Many tests exist, but we found no ap-
propriate test for Spitzer thermal conductivity in the Solar at-
mosphere. Therefore, we have derived an analytical first-order
solution for nonlinear diffusivity D = KT n with any exponent
n > 0 in s = {1, 2, 3} dimensions. Since the derivation and argu-
mentation are general, the solution can easily be applied to other
nonlinear diffusion problems.

The analytical solution is based on the self-similar shapes
by Pattle (1959). However, where those shapes required the
source quantity to diffuse in a vacuum, the new first-order so-
lutions allow for a finite background quantity T∞. That was a
key requirement for our use case, as the temperature in the So-
lar atmosphere is nonzero. In the limit T∞ → 0+, the first-order
solutions coincide with the original zeroth-order solutions. The
region of validity of both the zeroth-order and first-order solu-
tions have been derived analytically and tested numerically.

We have proposed 4 requirements for making a benchmark
based on the first-order solution: (i) The diffusing quantity ϕ0
must be large compared to the background quantity underneath
it; (ii) the simulation must be run for a sufficiently long time; (iii)
the width of the diffusing quantity must become large compared
to the initial extent; (iv) the initial source quantity must be well-
resolved numerically.

Following the requirements for making a test, we have
benchmarked various solvers for Spitzer conductivity in the
single- and multifluid radiative MHD code Ebysus. They agree
well with the first-order solutions. Going forward, Q. Wargnier
et al. 2024 (in prep.) will describe further the use of ROCK2 and
PIROCK in the Ebysus code, while G. Cherry et al. (in prep.)
will test further the solvers for Spitzer conductivity implemented
in the Bifrost code.

Finally, based on the theoretically and numerically devel-
oped understanding of Spitzer conductivity, we have analyzed
its role during the start of a nanoflare event in the Solar atmo-
sphere. We found that conductivity alone can spread the released
energy of a representative nanoflare 9 Mm in 1 s in a represen-
tative coronal atmosphere. Combining our first-order derivation
with a parameter scan allowed us to understand better the ther-
mal conduction evolution in terms of the background temper-
ature, coronal electron density, nanoflare radius, and nanoflare
energy release per area perpendicular to the magnetic field. We
found, as in Polito et al. (2018), that the IC before the nanoflare
release impacts the thermal conduction significantly. Particularly
the electron density is crucial because it is proportional to the
plasma’s total heat capacity and thus inversely proportional to
both the initial temperature increase and the effective tempera-
ture diffusivity K. The conduction slows down for either a larger
electron density or smaller nanoflare energy release.
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Appendix A: Thermal conductivity in a plasma

The conductive part of the energy equation can be written as(
∂e
∂t

)
cond
= −∇ · Fc, (A.1)

where e is the internal energy per unit volume and Fc is the heat
flux vector. In a magnetized plasma, the heat flux vector can be
split into two parts (see Priest 1984, p. 86)

Fc = −∇ · (κ∇T ) = −∇∥ · (κ∥∇∥T ) − ∇⊥ · (κ⊥∇⊥T ), (A.2)

where κ is the thermal conduction tensor and the subscripts ∥ and
⊥ signify components parallel and perpendicular to the magnetic
field vector B, respectively. In the solar atmosphere, the perpen-
dicular conduction is typically significantly smaller than the par-
allel. The parallel conduction coefficient for a fully ionized hy-
drogen plasma is (Spitzer 1962)

κ∥ = 1.8 × 10−5 T 5/2

lnΛ
erg s−1 cm−1 K−1 = κ∗∥T

5/2, (A.3)

which is close to 10−6T 5/2 in the chromosphere and corona for a
fully ionized hydrogen gas (Braginskii 1965; Priest 1984). This
κ∗
∥

is identical to the σ = 10−6 erg/(s cm K) in Rempel (2016).
For an ideal polytropic gas, the internal energy is related to

the temperature as

e = cvρT =
kbρ

µmp(γ − 1)
T, (A.4)

where cv is the specific heat capacity per mass and µ the mean
molecular mass. Assuming cv to be constant and using the con-
tinuity equation, Eq. (A.1) can be written on the form

∂T
∂t
=

1
cvρ
∂e
∂t
−

T
ρ

∂ρ

∂t

= −
1

cvρ
∇ · Fc +

T
ρ
∇ · (ρv), (A.5)

where the RHS of the temperature evolution is split into a con-
ductive term first and a convective term second. If we further
assume a negligible perpendicular heat conduction κ⊥ ≪ κ∥ and
a constant, isotropic density ρ, the conductive term in Eq. (A.5)
can be written on the form(
∂T
∂t

)
cond
= ∇∥ ·

(
κ∗
∥

cvρ
T 5/2
∇∥T

)
. (A.6)

Appendix B: Self-similar solutions

Here we present a thorough derivation of the self-similar solu-
tions to nonlinear diffusion, first described in the seminal paper
by Pattle (1959), given in this paper as Eqs. (3-5). The deriva-
tion is based on a 2D-derivation by F. Moreno-Insertis (2024,
priv. comm.) similar to that published in Moreno-Insertis et al.
(2022).

Make the ansatz that the distribution T has the shape and
boundary conditions

T (r, t) =
am

0

am f (ξ), with ξ ≡
r

a(t)
, (B.1)

∂T
∂r

∣∣∣∣∣ (r = 0, t) = 0, (B.2)

T [r > R(t); t] = 0. (B.3)

where m is a constant scale factor, a ≡ a(t) is a time-dependent
scaling function and a0 ≡ a(t = 0). Equation (B.3) says that the
distribution T is zero beyond some finite radius, giving it com-
pact support. We can choose m so that the solution of Eq. (1) has
a constant volume integral in s dimensions. The integral out to a
radius rλ = λa(t), where λ is an arbitrary constant, is

∫
V(r≤λa(t)

T (r, t)dsr = Ωs

λa(t)∫
0

T (r, t)rs−1dr =
Ωsam

0

am−s

λ∫
0

f (ξ)ξs−1dξ,

(B.4)

where Ωs = {2, 2π, 4π} is the total solid angle for s = {1, 2, 3}
dimensions. The integral is only constant in time if m ≡ s.

Next, insert Eq. (B.1) with m = s into Eq. (1). By differen-
tiating with respect to (wrt) time and space, followed by isolat-
ing all terms with explicit time dependence on the left-hand side
(LHS), we end up with

as n+1 ∂a
∂t
=
−Kas n

0

(
ξs−1 f n f ′

)′
(ξs f )′

, (B.5)

where the apostrophe marks a partial differentiation with respect
to ξ, that is f ′ ≡ ∂ f /∂ξ. As a consequence of the separation of
variables, the RHS is independent of time, making the LHS con-
stant in time. That is achieved when

a(t) = a0 (1 + χt)
1

s n+2 , (B.6)

where χ is a constant to be determined later, proportional to the
RHS of Eq. (B.5).

We insert Eq. (B.6) into Eq. (B.5) to get

χa2
0

s n + 2
(ξs f )′ = −K

(
ξs−1 f n f ′

)′
, (B.7)

which we integrate wrt ξ to get

χa2
0

s n + 2
ξs f = −Kξs−1 f n f ′ +C1, (B.8)

where the integration constant C1 = 0, because of the boundary
condition in Eq. (B.2). We make a separation of variables by
isolating f on the RHS and integrate once more to get

f n(ξ) = T n
0

1 − ξ2 n
s n + 2

χa2
0

2KT n
0

 , (B.9)

where the condition f (0) = T (0, 0) ≡ T0 has been used to define
an integration constant.

As we are interested in a solution that eventually goes to
zero, we see that f (r/a) must be zero beyond a radius R(t) de-
fined by setting Eq. (B.9) to zero

R2(t) =
s n + 2

n
2KT n

0

χ
(1 + χt)

2
s n+2 ≡ R2

0 (1 + χt)
2

s n+2 , (B.10)

which increases with time for χ > 0, as expected for diffusion.
Combining the expressions for a(t)/a0 and f (r/a), we get

T (r, t) = T0 (1 + χt)−
s

s n+2

(
1 −

r2

R2

) 1
n
, if r < R(t). (B.11)

The constant inverse time scale is defined through (B.10) as

χ =
s n + 2

n
2KT n

0

R2
0

. (B.12)

This concludes the derivation of Eqs. (3-5) in Sec. 2.1.
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